Course Syllabus
Module 1: Introduction to Data Analytics
- What is Data Analytics?
- Roles & Responsibilities of a Data Analyst
- Types of Analytics (Descriptive, Diagnostic, Predictive, Prescriptive)
- Data Life Cycle
- Data vs Information vs Insights
- Industry Use Cases (Finance, Retail, Healthcare, Marketing)
Module 2: Microsoft Excel for Data Analysis
Basics
- Excel Interface & Formulas
- Functions: SUM, AVERAGE, COUNT, IF, VLOOKUP, HLOOKUP
Intermediate
- Pivot Tables & Pivot Charts
- Conditional Formatting
- Data Cleaning
- Data Validation
- Excel Dashboards
Advanced
- Advanced Functions (INDEX-MATCH, XLOOKUP)
- Power Query
- Power Pivot
- Automation with Macros (Optional)
Module 3: SQL for Data Analysis
- Introduction to Databases
- SQL Queries (SELECT, WHERE, ORDER BY)
- JOINS (INNER, LEFT, RIGHT, FULL)
- GROUP BY, HAVING
- Aggregations
- Subqueries
- Views & Stored Procedures (Basic)
- Real-world SQL practice using datasets
Module 4: Python for Data Analysis
- Python Basics (Variables, Loops, Conditions)
- Data Structures: List, Dictionary, Tuple
- Using Jupyter Notebook
- Libraries:
- NumPy (Arrays, Stats)
- Pandas (Data Cleaning, Merging, Grouping)
- Matplotlib & Seaborn (Data Visualization)
- Exploratory Data Analysis (EDA)
- Handling Missing Values
- Outlier Detection
- Data Transformation
Module 5: Data Visualization Tools
Power BI
- Interface & Data Model
- Power Query (ETL)
- DAX Functions
- Interactive Dashboards
- Creating KPIs & Reports
- Publishing to Power BI Service
Tableau (Optional / Based on Demand)
- Dimensions & Measures
- Filters, Charts, Calculated Fields
- Storytelling Dashboards
Module 6: Statistics for Data Analysis
- Descriptive Statistics (Mean, Median, Mode)
- Probability Basics
- Distribution Types
- Hypothesis Testing
- Correlation & Regression
- Statistical Significance
- A/B Testing
Module 7: Data Cleaning & Preprocessing
- Standardization vs Normalization
- Feature Engineering Basics
- Handling Duplicate Data
- Working with Categorical Data
- Date & Time Formatting
Module 8: Business Intelligence (BI) Concepts
- What is BI?
- KPIs & Metrics
- Data Warehousing Basics
- Dashboards for Business Decisions
- Case Studies (Marketing, Sales, Finance)
Module 9: Domain Knowledge (Optional Based on Institute)
Choose any:
- Finance Analytics
- Marketing Analytics
- HR Analytics
- Retail Analytics
- Supply Chain Analytics
Module 10: Projects & Portfolio
✔ Sales Dashboard (Excel / Power BI)
✔ Customer Segmentation (Python)
✔ Market Basket Analysis
✔ SQL Case Study (E-Commerce or Banking)
✔ Data Cleaning Project (Pandas)
✔ Final Data Analytics Capstone Project
Module 11: Soft Skills & Job Preparation
- Resume for Data Analyst
- Portfolio on GitHub / Kaggle
- Mock Interviews
- Communication Skills
- Real Business Case Studies