Best Seller Icon Bestseller

Diploma In Data Science(M-DS-2829)

  • Last updated Dec, 2025
  • Certified Course
  • Duration12 Months
  • Enrolled0
  • Lectures35
  • Videos0
  • Notes0
  • CertificateYes

What you'll learn

Course Includes

  • ·      Classroom Training Program
  • ·      100% Practical Training
  • ·      Complete eBook
  • ·      Online Offline Assessments
  • ·      100% Job Assistance
  • ·      Access on All Device
  • ·      Lifetime Access Card
  • ·      100% Job Guaranteed Courses
  • ·      Job Referral In MNC
  • ·      Internship With The Organization
  • ·      Training By Work Professional
  • ·      Top Rated Computer Institute
  • ·      We Have Regular Batches

Show More

Course Syllabus

1. Introduction to Data Science

  • What is Data Science?
  • Data Scientist roles & skills
  • Data Science lifecycle (CRISP-DM, OSEMN)
  • Applications across industries
  • Overview of tools: Python, SQL, Jupyter, Git, Cloud

2. Python for Data Science (Foundations)

  • Python basics: variables, loops, functions
  • Data structures: lists, tuples, sets, dictionaries
  • File handling
  • Virtual environments & package management
  • Libraries:
  • NumPy (arrays, broadcasting)
  • Pandas (Series, DataFrames, joins, groupby)

3. Exploratory Data Analysis (EDA)

  • Data cleaning & preprocessing
  • Handling missing values, outliers, duplicates
  • Feature types (numeric, categorical, datetime, text)
  • Visualization:
  • Matplotlib, Seaborn, Plotly
  • Descriptive statistics
  • Correlation analysis
  • Data distributions

4. Statistics & Probability for Data Science

  • Descriptive vs inferential statistics
  • Probability theory
  • Random variables, distributions
  • Sampling & estimation
  • Hypothesis testing (t-test, chi-square, ANOVA)
  • Confidence intervals
  • Bayesian thinking (optional)

5. SQL for Data Science

  • CRUD operations
  • Joins, subqueries
  • Window functions
  • Aggregations
  • Working with databases (MySQL / PostgreSQL)
  • Query optimization basics

6. Data Wrangling & Feature Engineering

  • Encoding categorical variables
  • Scaling & normalization
  • Binning
  • Feature selection techniques
  • Feature extraction
  • Date-time features
  • Handling imbalanced datasets

7. Machine Learning (Supervised Learning)

  • ML workflow & model evaluation
  • Linear Regression
  • Logistic Regression
  • Decision Trees & Random Forest
  • Gradient Boosting (XGBoost, LightGBM, CatBoost)
  • K-Nearest Neighbours
  • Support Vector Machines
  • Model tuning & cross-validation
  • Evaluation metrics (RMSE, R², Precision, Recall, F1)

8. Unsupervised Learning

  • K-Means clustering
  • Hierarchical clustering
  • PCA & dimensionality reduction
  • Anomaly detection
  • Association rule mining (Apriori)

9. Time Series Analysis

  • Components of time series
  • Stationarity & ACF/PACF
  • ARIMA, SARIMA
  • Prophet, LSTM (optional)
  • Forecast evaluation

10. Deep Learning

  • Neural network basics
  • Activation functions
  • Loss functions & optimizers
  • Backpropagation
  • Introduction to TensorFlow / PyTorch
  • Convolutional Neural Networks (CNNs)
  • Recurrent Neural Networks (RNN, LSTM, GRU)
  • Transfer learning

11. Natural Language Processing (NLP)

  • Text preprocessing (tokenization, stemming, lemmatization)
  • TF-IDF, bag-of-words
  • Word embeddings (Word2Vec, GloVe)
  • Transformers & BERT
  • Sentiment analysis
  • Chatbot basics

12. Big Data & Cloud

  • Hadoop ecosystem: HDFS, MapReduce
  • Spark (RDD, DataFrames, MLlib)
  • Cloud basics (AWS / Azure / GCP)
  • Data pipelines & ETL
  • Data lakes & data warehouses (Snowflake, BigQuery)

13. MLOps (Machine Learning Operations)

  • Model deployment: Flask/FastAPI
  • CI/CD for ML
  • Docker & containers
  • Model monitoring
  • Drift detection
  • ML platforms (AWS Sagemaker, Azure ML, GCP Vertex AI)

14. Data Visualization & Storytelling

  • Dashboard tools: Power BI / Tableau
  • Creating effective insights
  • Business problem framing
  • Presentation techniques for stakeholders

15. Capstone Projects

Examples:

  • Customer churn prediction
  • Sales forecasting
  • Recommendation system
  • Fraud detection
  • NLP text classifier
  • Computer vision object detection

16. Bonus Modules (Optional)

  • Generative AI / LLM basics
  • Reinforcement learning
  • Graph analytics
  • Advanced statistics

Course Fees

Course Fees
:
₹65000/-
Discounted Fees
:
₹ 34999/-
Course Duration
:
12 Months

Review

0.0
Course Rating (0 reviews)
0%
0%
0%
0%
0%